jueves, 14 de julio de 2011

¿Hasta cuándo se podrán extraer minerales?

Clemente Álvarez. Otro Uruguay es posible.

Con estas tasas de extracción, no sólo se agota la energía no renovable. También otros recursos. Y en parte los segundos por falta de la primera, como deja claro esta investigadora de la Universidad de Zaragoza.



(...)

La ingeniera química Alicia Valero se propuso estudiar el capital mineral de la Tierra para su tesis doctoral en la Universidad de Zaragoza, pero al tratar de avanzar se encontró con una dura roca que tardó cinco años en superar. Las investigaciones relacionadas con su trabajo han conseguido varios premios, el último en la 5ª Conferencia sobre Desarrollo Sostenible en Energía, Agua y Medio Ambiente, celebrada en Dubrovnik (Croacia).

(...)

Según sus cálculos, los diez minerales más abundantes serían cuarzo, albita, oligoclasa, ortoclasa, andesina, paragonita, biotita, hidromuscovita, augita y hornblenda, a los que sigue una larga lista con unos 300 nombres, muchos de ellos imprescindibles para la fabricación de productos. El que estos se agoten depende a la vez de su cantidad, de su composición y de su concentración, pues puede no ser viable sacarlo del subsuelo. “La segunda ley de la termodinámica dice que cuando la concentración de un recurso tiende a cero, la energía requerida para extraerlo tiende al infinito”, comenta la investigadora. Como incide, esto también se cumple con el mineral que ha sido ya transformado en un producto, como las latas de conservas que se tiran a la basura. Si las latas acaban en vertederos, los metales con los que se han fabricado se irán dispersando poco a poco y resultará demasiado complicado recuperarlos, pero si se tiran en el contenedor de reciclaje su concentración será suficiente para volver a utilizarlos y no tener que extraer nuevos minerales.

Para cuantificar la escasez de un determinado mineral a menudo se utilizan los costes de extracción o su precio en el mercado. La investigadora de Zaragoza mide la degradación del capital mineral por indicadores físicos, en concreto, por medio de las leyes de la termodinámica y la exergoecología. De forma simplificada, se trata de unificar la cantidad, la composición y la concentración del mineral en una misma propiedad: "la exergía"; una metodología propuesta en 1998 por su propio padre, Antonio Valero, director del Centro de Investigación de Recursos y Consumos Energéticos (CIRCE). Tras cinco años de investigaciones, la ingeniera química lo tiene muy claro: "No nos enfrentamos a una crisis energética, sino de minerales".

(...)

De acuerdo a sus estimaciones, se habría agotado ya el 92% de las recervas de mercurio, el 79% de plata, el 75% de oro, el 75% de arsénico... En cuanto a los minerales más utilizados, la tasa de agotamiento del hierro sería del 28% y la del aluminio del 15%, en cambio la del cobre superaría el 50%. “El oro está ahí, no se pierde y está muy bien controlado, pero otros minerales se están dispersando en forma de basura en vertederos o de contaminación, como ocurrió con el plomo que se utilizaba antes en la gasolina”, especifica Valero.

Con el aluminio, el hierro y el cobre, la ingeniera química aplicó también el modelo de Hubbert para, al igual que se ha estimado con el petróleo u otros minerales energéticos, calcular cuándo se alcanzaría el pico de producción, a partir del cual comenzaría a descender.

El resultado que encontró es que, si bien este pico ya habría sido alcanzado por el petróleo en 2008 y llegaría para el gas natural en 2023 y para el carbón en 2060, en el caso del cobre esto ocurriría en 2024, en el del aluminio en 2057 y en el del hierro en 2068.

No hay comentarios:

Publicar un comentario